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Generalized geometric cluster algorithm for fluid simulation
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We present a detailed description of the generalized geometric cluster algorithm for the efficient simulation
of continuum fluids. The connection with well-known cluster algorithms for lattice spin models is discussed,
and an explicit full cluster decomposition is derived for a particle configuration in a fluid. We investigate a
number of basic properties of the geometric cluster algorithm, including the dependence of the cluster-size
distribution on density and temperature. Practical aspects of its implementation and possible extensions are
discussed. The capabilities and efficiency of our approach are illustrated by means of two example studies.
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[. INTRODUCTION simulation of the system under consideration, but the GCA
) ) ) ) ) follows a different trajectory through phase space. Secondly,
Computer simulation methods play an increasingly impor-the nonlocal moves involve clusters of particles that are con-
tant role in the study of complex fluids. Historically, many structed in such a way thatl proposed moves are accepted
simulations have concentrated on fluids modeled as an ashis is not only an additional factor contributing to the effi-
sembly of monodisperse spherical particles interacting, e.gciency of the method, but it also has a more profound sig-
via a bare excluded-volume potentigbrd-sphere fluidor a  nificance. Namely, in order to satisfy detailed balaf&e8]
Lennard-Jones interactigri]. While such systems can al- without imposing the usual Metropol[®] acceptance crite-
ready display a wealth of interesting features, such as a solidion, the ratio of the probability of transforming a particle
liguid transition and—in the presence of attractive configurationC into a new configuratiorC’ and the prob-
interactions—a critical point, it is also clear that real fluids ability of the reverse transformation must be identical to the
and solutions can exhibit far richer behavior. Various factordatio of the Boltzmann factors of the configurati@ and
contribute to the additional features found in these systemdhe original configuratiorC. Clearly, this can only be real-
including internal degrees of freedom of the constituentdZ€d if the transformationg‘moves”) are proposed with a
(such as in polymeric systemsnteractions induced by elec- prqbabmty that involves knowledge gbc_)ut the phyS|caI_ prop-
trical charges, and the presence of various species with §lies of a system. For the vast majority of MC algorithms,
strong size asymmetry. Modeling any of these properties ca is is not the case. The most weII-known.exceptlons are the
greatly increase the required numerical efforts and in certai We.ndsen'-Wan@\N) algorithm[10] for lattice spin models
situations can make the simulations prohibitively expensiveand 1ts variant due o quﬁll]' Among continuum systems,
) . : ." “hard-sphere fluids constitute a special case, since all configu-
Although available computational power continues to in-

. . P . rations without particle overlap have the same energy and
crease steadily, further progress in simulating such SYsteMg s the same Boltzmann factor. However, it is generally

will critically depend on algorithmic aqvancgs. accepted that thesejection-freealgorithms are an exception
Recently, we have introduced a simulation method thag

dqd f the ab ioned licating f cf., e.g., Ref[7], Sec. 14.3.1 Indeed, ever since the inven-
addresses one of the above-mentioned complicating factorg, , o¢the SW cluster algorithm for Ising and Potts models,
namely the slowdown arising in simulations of solutions

7 ) fl W diff ; lso Ref its extension to fluids has been a widely pursued goal. For
containing species of largely different si4@3 (see also Ref. | 4ice gases, the extension can be accomplished in a straight-

[3). This method, Whi.Ch ggneralizes an original idea due Gorward manner, since they are isomorphic to Potts models.
Dress and Krautfd] to identify clusters ba;ed upon geomet- However, for off-lattice (continuum fluids, this mapping
ric symmetry operations and accordingly is called then- ..ot pe applied, owing to the absence of particle-hole

eralized r?eofmetrlc clulgfcer a!gorlthnlwiGCA), exh||b|ts| t\'\/;o symmetry. This symmetry is a critical ingredient for the SW
noteworthy features. First, it employs a nonlocal Monte o ithm for Ising and Potts models, as clusters of sfims

Carlo (MC) scheme to move the constituent particles in a\/ariables, in the case of the Potts mgdaike identified using

nonphy;ical way, thus introdpcing grtifjcial dynami'cs Wh".ea symmetry operation that, if applied globally, would leave
preserving all thermodynamic equilibrium properties. Th|sthe Hamiltonian of the system invariant. The only known

greatly accelerates the generation of uncorrelated Conﬁgur%ktensions to continuum systems apply to the Widom-

tions of particles. We emphasize that our scheme does Nnef,jinson model for fluid mixture§12,13, in which iden-

Stical particles do not interact and unlike species experience a
rd-core repulsion, and the closely related Stillinger-
elfand model, in which the hard core is replaced by a soft
repulsion[14]. However, no generalization has been found in
which identical particles do not behave as an ideal gas. In a
*Corresponding author. Email address: luijten@uiuc.edu separate development, Dress and Krau4thobserved that,

produced by the GCA are generated according to the sa
Boltzmann distribution that would govern a conventionalH
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for hard-core fluids, an overlap-free configuration can be (i) A “bond” is formed between every pair of nearest
transformed into a new configuration of nonoverlapping parneighbors that are aligned, with a probabilipy =1-exp
ticles by means of geometricsymmetry operation. The par- (-28J), where=1/kgT.

ticular advantage of this scheme is its ability to efficiently (i) All spins that are connected, directly or indirectly, via
relax size-asymmetric mixturefl5-17. In Ref. [2], we  bonds belong to a single cluster. Thus, the bond assignment
showed how this advantage can be retained for fluids witiProcedure divides the system into clusters of parallel spins.
arbitrary pair potentials, while simultaneously exploiting the Note how the bond probabilittand hence the typical cluster
invariance of the Hamiltonian under the symmetry operatior§iZz6 grows with increasing coupling streng@ld (decreasing

to create particle clusters in a manner that is fully analogoutémperature For finite 8J,p; <1 and hence a cluster is gen-
to the SW or Wolff method. An application to a concrete €rally asubsetf all spins of a given sign. . .
physical problem has been presented in Heg], where (iii ) AI_I_spllns in e_ach cluster are fllpperbl_lectwely\_/wth
colloid-nanoparticle mixtures featuring attractive, repulsive,2 Probability;. That is, for each cluster of spins, a spin value
and hard-core interactions were simulated for size asymmes1 IS chosen and this value is assigned to all spins that be-
tries up to 100. We remark that geometric cluster algorithm ong to the cluster. . . .
have also been applied successfully to lattice-based modeIR. Th? last, and qru0|§l7, ;tep ']:C’ rr;]adeppossmle gylthe Forr]tum-
Heringa and Bl6te have employed an algorithm of this typ asteleyn mapping[27,2§ of the Potts model on the

. ; - ; . - random-cluster model, which implies that the partition func-
to investigate lattice gases with nearest-neighbor exclusmgOn of the former can be written as a Whitney polynomial
[19] and developed a version for simulation of the Ising

; o that represents the partition function of the laft2®]. Ac-
model in the constant-magnetization ensemf6]. The  cqrdingly, all spins in a clustea connected component in
“pocket algorithm” of Krauth and Moessng21], which is  the random-cluster modehre uncorrelated with all other
essentially a geometric cluster algorithm for dimer modelsspins, and can be assigned a new spin value.
was used to investigate hard-core dimers on three- Thjs algorithm possesses several noteworthy properties.
a profound difference between the geometric cluster algogritical point[10] by efficiently destroying nonlocal correla-
nthm and 'other Monte Carlo schemes tha}t move groups Ofions (see also Ref.8] for a pedagogical introductionSec-
particles simultaneouslj23-26. Such algorithms can work only, this algorithm isejection-free Indeed, the assignment
efficiently in specific cases, and are sometimes viewed agf ponds involves random numbers, but once the clusters
counterparts of the SW algorithm merely because they alsfaye peen formed, each of them can be flipped indepen-
invoke the notion of a “cluster,” but they typically involve a gently without imposing an acceptance criterion involving
tunab'le parameter and are neither rejec.tlon—'free nor do thepe energy change induced by such a collective spin-reversal
exploit a symmetry property of the Hamiltonian. operation. Thirdly, the Fortuin-Kasteleyn mapping can also

In the current article, we provide a detailed description ofjg applied to systems in which each spin interacts not only
thg generalized geome;ric cluste.r algorithm for continuumpsith its nearest neighbors, but also with other sgi2g]. In
fluids and we study basic properties such as the dependenggticular, the coupling strength can be different for different
of cluster-size distribution on temperature and density. W%pin pairs, leading to a probabilify; that is, e.g., dependent
also describe a multiple-cluster variant of the generalizeg)n the separation betweérand j. Thus, cluster algorithms
GCA in which a particle configuration is fully decomposed can be designed for spin systems with medi8e] and
into clusters that can be moved independently. long-range interactiong31].

Critical slowing down is suppressed even more strongly
in a variant of this algorithm due to WolffL1]. In this imple-

Il. ALGORITHM DESCRIPTION mentation, no decomposition of the entire spin configuration
A. Swendsen-Wang and Wolff algorithms for lattice spin into clusters takes place. Instead, a single cluster is formed,
models which is then always flipped.

. , - ... (i) Aspini is selected at random.
For reference in future sections that highlight the similari- (i) All nearest neighbors of this spin are added to the
ties between the generalized GQ2| for off-lattice fluids  ¢jyster with a probability; =1 - ex-2/J), provided sping

and the SW10] and Wolff [11] algorithms for lattice spin 54 are parallel and the bond betweieand| has not been
models, we briefly summarize the lattice cluster algorithms.,nsidered before.

for the case of al-dimensional Ising model with nearest-

iii) Each spinj that is indeed added to the cluster is also
neighbor interactions, described by the Hamiltonian (i) P

placed on the stack. Once all neighbors dfave been con-

Higra= -3 ss (1) sidered for inclusiqn in the cluster, a spin_is retri(_aved from
Ising s I the stack and all its neighbors are considered in turn for

inclusion in the cluster as well, following stéj).

The spinss are placed on the vertices of a squéde 2) or (iv) Steps(ii) and (iii) are repeated iteratively until the

simple cubic(d=3) lattice and take values 1. The sum runs stack is empty.

over all pairs of nearest neighbors, which are coupled via a (v) Once the cluster has been completed, all spins in the

ferromagnetic coupling with strength> 0. Starting from a cluster are inverted.

given configuration of spins, the SW algorithm now proceeds Again, this is a rejection-free algorithm, in the sense that

as follows. the cluster is always flipped. Just as in the SW algorithm, the

066701-2



GENERALIZED GEOMETRIC CLUSTER ALGORITHM FOR.. PHYSICAL REVIEW E 71, 066701(2009

(iv) For each cluster, all particles can be exchanged be-

@ @ %@ 5 @ @ @ tweenC andC without affecting particles belonging to other
@ ‘% Q clusters. This exchange is performed for each cluster inde-
- pendeDtIy with a probabilit)%. Thus, if the superposition of

[}
G%D @ % () @ C andC is decomposed intbl clusters, there aré¥?possible

@ new configurations. The configurations that are actually real-

@) ) © ized are denote@’ andC’, i.e., the original configuratio@

FIG. 1. lllustration of the geometric cluster algorithm for hard IS transformed int€€" and its point-reflected counterpartis
disks [4]. (a) Original configuration.(b) A new configuration transformed intaC’. B
(shaded circlgsis created by means of a point reflection of all  (v) The configurationC' is discarded and’ is the new
particles with respect to a randomly chosen pivot pesntall filed  configuration, serving as the starting point for the next itera-
disk). The superposition of the original and the new configurationtijon of the algorithm. Note that a new pivot is chosen in
leads to groups of overlapping patrticles. In this example, there argvery iteration.
three pairs of groups({1,2, {3}, {4,5.8). Each pair is denoted a Observe that periodic boundary conditions must be em-
cluster. Thg particles in any one of.these clustgrs can be pomt'ployed, such that an arbitrary placement of the pivot is pos-
reflected with respect to the pivot without affecting the other twoSible Other self-inverse operations are permissible, such as a
clusters. This can be used to carry out the point reflection for ever e . . . L
cluster with a preset probabilityc) Final configuration that results )f)efﬂt?]((:etlOTaweanSllJe'ls?ébleg]érI]T)::/arll:cirr]] %6:32rvflom;l;?isonegrtaggir;ist
if, starting from the original configuration, only the particles in the While gperating in the canonical rather than i;ytheggrang-.

third cluster{4,5,8 are point-reflected. This approach guarantees ical ble. thi " learlv b
that every generated configuration will be free of overlaps. Notecanonical ensembie, this prescription clearly bears great re-

that the pivot will generally not be placed in the center of the ceII,Semblance to the original SW algorithm. The original con-

and that the periodic boundary conditions indeed permit anyfiguration is decomposed into clusters by exploiting a
position. symmetry operation that leaves the Hamiltonian invariant if

applied to the entire configuration; in the SW algorithm, this
d§ the spin-inversion operation and in the geometric cluster

the individual probabilitiesy; involve single-particle ener- algorithm it is a geometric symmetry operation. Subse-

gies rather than an acceptance criterion that involves the tot éﬂﬁ:gﬁpaeggévnﬁsnvcgﬁr:t::()er:t';ﬁrgg[sgb%ymovmg each clus-
energy change induced by a cluster flip. We note that this method represents an approach of great

generality. For example, it is not restricted to monodisperse
B. Geometric cluster algorithm for hard-sphere mixtures systems, and has indeed been applied successfully to binary
] ] N o ] . [15] and polydispers¢16] mixtures. Indeed, the nonlocal
Since suppression of critical slowing is a highly attractive character of the particle moves makes them exquisitely suit-
feature for fluid simulations as well, the generalization of thegp|e to overcome the jamming problems that slow down the
SW and Wolff algorithms to fluid systems has been a widelysimy|ation of size-asymmetric mixtures. An important limi-
pursued goal. In the lattice-gas interpretation, where a spigyion of the algorithm is the fact that the average cluster size
+1 corresponds to a particle and a spin —1 corresponds 10 gRcreases very rapidly beyond a certain density, correspond-
empty site, a spin-inversion operation corresponds to @ pafpq to the percolation threshold of the combined system con-

ticle being inserted in or removed from the system. Thistainin the superposition of the configuratid®andC. Once

“particle-hole symmetry” is absent in off-latti¢eontinuum this c?uster spang the entire s stemg the al orithrﬁ is clearl

systems. While a particle in a fluid configuration can pan Y ' 9 y
no longer ergodic.

straightforwardly be deleted, there is no unambiguous pre- . . .
scrip%ion on h0\)//v to transform empty space into% parti(?le. We can take the analogy'wnh the Iattu_:e cluster algorithms
More precisely, in the lattice cluster algorithms the 0perationsgreiaﬁf[eg’ar:“geh?gr rr%l e:tzzlwallggwg]atlg? single-clustéfolff)
performed on every spin is self-inverse. This requirement is ~ . . . . VR

(i) In a given configuratiol, a “pivot” is chosen at ran-

not fulfilled for off-lattice fluids. dom
Dress and Krauti4] proposed a method to efficiently L ) .
generate particle configurations for a hard-sphere liquid. Thi% (ii) Aparticlei IS sele(;ted as the first partlcle }hat belongs
o the cluster. This particle is moved via a point reflection

eometric cluster algorithrproceeds as follow&f. Fig. 1). . . . o O
¢ (i) In a given congf]igurartIi)orC a “pivot” is chosen gt ran- with respect to the pivot. In its new position, the particle is
' referred to ag’.

don_1_. ] o~ . (iii) Step(ii) is repeatedterativelyfor each particlg that
(if) A configurationC is now generated by carrying out a overlaps withi’. Thus, if the(moved particle j’ overlaps
point reflection for all particles i€ with respect to the pivot. \uith another particlk, particlek is moved as well. Note that
(iii) The configurationC and its transformed counterpart 4| ranslations involve the same pivot.
C are superimposed, which leads to groups of overlapping (iv) Once all overlaps have been resolved, the cluster
particles. The groups generally come in pairs, except possimove is completed.
bly for a single group that is symmetric with respect to the As in the SW-like prescription, a new pivot is chosen for
pivot. Each pair is denoted a “cluster32]. each cluster that is constructed.

cluster-construction process involves random numbers, b
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C. Geometric cluster algorithm for interacting particles:
Single-cluster variant

The geometric cluster algorithm described in the previous
section is formulated for hard-core interactions. For applica-
tion to general pair potentials, it was suggested in RHfto
impose a Metropolis-type acceptance criterion based upor
the energy difference induced by the cluster move. Indeed, ir
the case of potentials that consist of a hard-derecluded-
volume contribution supplemented by an attractive or repul-  FIG. 2. Two-dimensional illustration of the interacting geomet-
sive tail, such as a Yukawa potential, the cluster-constructionc cluster algorithm. Like in Fig. 1, open and shaded disks denote
procedure guarantees that no overlaps are generated and the particles before and after the geometric operation, respectively,
acceptance criterion takes into account the tail of the interand the small disk denotes the pivot. However, in gemeralized
actions. For “soft-core” potentials, such as a Lennard-JoneSCA, a single cluster is constructed, to which particles are added
interaction, the situation becomes already somewhat mor&ith an interaction-dependent probabili) Original configura-
complicated, since an arbitrary excluded-volume distancdon- (b) A cluster is constructed as follows. Particle 1 is point-
must be chosen for the cluster construction. As the algorithnfeflected with respect to the pivot. If, in its new position, it has a
will not generate configurations in which the separation be_repglswe Interaction with particle 2, t.he latter has a certain p_rob-
tween a pair of particles is less than this distafice, the ability t.o be pomt-refllect.ed as V\{ell, with respect Fo the same pivot.

icle “diameter.” in the case of monodisperse s é) ihs Assuming an attractive interaction between particles 2 and 3,_ par-
particie ' : P yslel ticle 3 is translated as well, but again only with a certain probability.
must be set to a value that is smaller than any separation th ¢

Id tvpicall read ted in RES3]. In eith i particles 4—6 are not affected by these point reflections, the clus-
would typically occur, as already noted in RE33]. In either ter construction terminatesc) The new configuration consists of

case, the clusters that are generated have_only limited physﬁérticles 1-3 in their new positions and particles 4—6 in the original
cal relevance, and the evaluation of a considerable part of t%sitions. A new pivot is chosen and the procedure is repeated.

energy change resulting from a cluster move is deferred until

the acceptance step. Rejection is not only likely, but also (i) A particlei at positionr; is selected as the first par-
costly, given the computational efforts of both cluster con-ticle that belongs to the cluster. This particle is moved via a
struction and energy evaluation. We note that this approacpoint reflection with respect to the pivot. In its new position,
was nevertheless applied to Yukawa mixtures with moderatehe particle is referred to ds, at positionr;.

size asymmetrydiameter ratio<5) [33]. (i) Each particlg that interacts with ori’ is now con-

On the other hand, Heringa and BI{t20,34 devised a sidered for addition to the cluster. Unlike the first particle,
geometric cluster algorithm for the Ising model in which the particlej is point-reflected with respect to the pivot only with
nearest-neighbor interactions between spins are taken ing probability p;=max1-exgd-BA;),0], where A;=V(|r{
account already during the cluster construction. While this_r].|)_v(|ri_r].|)_ A particlej that interacts with both in its
lattice model can obviously be simulated by the SW andp|d and in its new position is nevertheless treated only once.
Wolff algorithms, their approach permits simulation in the  (jv) Each particlej that is indeed added to the cluster
constant-magnetization ensemble. The geometric operationse., moved is also placed on the stack. Once all particles
employed map the spin lattice onto itself, such that excludedmteracting withi or i’ have been considered, a particle is
volume conditions are satisfied automatically: every spiryetrieved from the stack and all its neighbors that are not yet
move amounts to aexchangeof spins. For every spin pair part of the cluster are considered in turn for inclusion in the
(i,i") that is exchanged, each of its nearest-neighbor pairgjyster as well, following stefiii ).

(k,k’) is exchanged with a probability that depends on the (v) Steps(iii) and (iv) are repeated iteratively until the
change in pair energy = (Ey+E;/) —(Ej +Ej»). This pro-  stack is empty. The cluster move is now complete.

cedure is then again performed iteratively for the neighbors If a particle interacts with multiple other particles that
of all spin pairs that are exchanged. have been added to the cluster, it can thus be considered

In Ref.[2], we introduced a generalization of the GCA for multiple times for inclusion. However, once it has been
off-lattice fluids, in which particles undergo a geometric op-added to the cluster, it cannot be removed. This is an impor-
eration in a stochastic manner, akin to the approach of Retant point in practice, since particles undergo a point reflec-
[20]. The differences arise from the fact that no underlyingtion already during the cluster construction proo@ssl thus
lattice is present, so that particles are added to the cluster areed to be tagged, in order to prevent them from being re-
an individual basis, rather than in pairs. All interactions areturned to their original position by a second point reflection
treated in a unified manner, so there is no technical distincA crucial aspect is that the probability; only depends on
tion between attractive and repulsive interactions or betweethe change irpair energybetweeni andj. A change in the
hard-core and soft-core potentials. Tlyisneralized GCAs  relative position of andj occurs if particlgj is notadded to
most easily described as a combination of the single-clustethe cluster. This happens with a probability ;-
methods formulated in Secs. Il A and Il B. We assume a=min[exp(—B4;j),1]. The similarity with the Metropolis ac-
general pair potentiaV;(r;;) that does not have to be iden- ceptance criterion is deceptivand merely reflects the fact

©

tical for all pairs(i,j) (see Fig. 2 that both algorithms aim to generate configurations accord-
(i) In a given configuratiorC, a “pivot” is chosen at ran- ing to the Boltzmann distributionsinceA;; does not repre-
dom. sent thetotal energy change resulting from the translation of
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particle_i. Instgad, pther energy changes. are taken into ac- T(Y — X) = C ex +/82 Anl, (4)
count via the iterative nature of the algorithm. m

It is instructive to note that the expression fay bears o ) )
close resemblance to the probability employed in the Swvhere the factolC is identical to the prefactor in EG3).

algorithm (Sec. 11 A). In the latter, two different situations SiNce we require the geometric operation to be self-inverse,
can be discerned that lead to a change in the relative enerd{e thus find that the cluster move satisfies detailed balance
A" between a spii that belongs to the cluster and a spin 3t &n acceptance ratio of unity,

that does not yet belong to the clusteri Hndj are initially

antiparallel, j will never be added to the cluster and only T(X—Y) expl- '82 Al

spin i will be inverted, yielding an energy changlﬁv": = :exg{—ﬁz Ak]

-2J<0 that occurs with probability unity. If and j are TY =X exd+ B2 Al k

initially parallel andj is not added to theWcIuster, the result- m

ing change in the pair energy equ =+2J>0. This exp(— BE

occurs with a probability exp-23J) <a1l.§ These two situa- =exfd- B(Ey-Ex]= %, (5)
tions can indeed be summarized as [reig(-BA;"), 1], just X

as in the generalized GCA. whereEy andE, are the internal energies of configuratiofis

The ergodicity of this algorithm follows from the fact that and Y, respectively. That is, the ratio of the forward and
there is a nonvanishing probability that a cluster consists ofeverse transition probabilities is equal to the inverse ratio of
only one particle, which can be moved over an arbitrarilythe Boltzmann factors, so that we indeed have created a
small distance, since the location of the pivot is chosen atejection-free algorithm. This is obscured to some extent by
random. This obviously requires that not all particles are parthe fact that in our prescription the cluster is moved while it
of the cluster, a condition that is violated at high packingis being constructed, similar to the Wolff algorithm in Sec.
fractions. While a compact proof of detailed balance of thell A. The central point, however, is that the construction
generalized GCA has already been given in R}, we in- solely involves single-particle energies, whereas a
clude it here for the sake of completeness. We consider Aletropolis-type approach only evaluates the total energy
configurationX that is transformed into a configuratidhby ~ change induced by a multiparticle move and then frequently
means of a cluster move. All particles included in the clusterejects this move. By contrast, the GCA avoids large energy
maintain their relative separation; as noted above, an enerdifferences by incorporating “offending” particles into the
change arises if a particle i@t included in the cluster, but cluster with a high probability.
interacts with a particle that does belong to the cluster. Fol- ) ) ) ) )
lowing Wolff [11] we denote each of these interactions as aD. Geometric cluster algorithm for |nt§_ract|ng particles: Full
“broken bond.” A broken bond that corresponds to an en- cluster decomposition
ergy change, occurs with a probability 1p,=1 if A,<0 We now introduce a SW implementation of the general-
and a probability 1p,=exp(—B4,) if A,>0. The formation jzed GCA. The merit of this formulation, which builds upon
of an entire cluster corresponds to the breaking of dlgeif the Wolff version described in the previous section, is two-
bonds, which has a probability. This set is comprised of fold: First, it demonstrates that the algorithm constitutes the
the subse{l} of broken bondd that lead to an increase in true off-lattice counterpart of the SW and Wolff cluster algo-
pair energy and the subgen} of broken bonds that lead to a rithms for spin models outlined in Sec. Il A. Secondly, the

decrease in pair energy, such that SW formulation produces a full decomposition of an off-
lattice fluid configuration intostochastically independent

P=]](1-p)= exp{— 8>, A|] (2)  Clusters This implies an interesting and remarkable analogy

K | with the Ising model. As observed by Coniglio and Klein

[35] for the two-dimensional Ising model at its critical point,
The transition probability from configuratioxi to configura-  the clusters created according to the prescription in Sec. Il A
tion Y is proportional to the cluster formation probability, are just the so-called “Fisher drople{s6]. While Ref.[35]
makes no reference to the work by Fortuin and Kasteleyn,
TX—Y)=C exp[—ﬁE A|]- (3)  these “Coniglio-Klein clusters” are implied by the Fortuin-
[ Kasteleyn mapping of the Potts model onto the random-
cluster mode[28], which in turn constitutes the basis for the
whereC accounts the factor for the fact that various arrangeSwendsen-Wang approa¢hO]. The clusters generated by
ments of bonds within the clustéfinternal bonds) corre-  the GCA do not have an immediate physical interpretation,
spond to the same set of broken bonds. In addition, it incoras they typically consist of two spatially disconnected parts.
porates the probability of choosing a particular pivot and aHowever, just as the Ising clusters can be inverted at random,
specific particle as the starting point for the cluster. each cluster of fluid particles can be moved independently
If we now consider the reverse transitidfi— X, we ob-  with respect to the remainder of the system. As such, the
serve that this again involves the gk}, but all the energy generalized GCA can be viewed as a continuum version of
differences change sign compared to the forward move. Corthe Fortuin-Kasteleyn mapping.
sequently, the subsgf in Eq. (3) is replaced by its comple- The cluster decomposition of a configuration proceeds as
ment{m} and the transition probability is given by follows. First, a cluster is constructed according to the Wolff
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version of Sec. Il C, with the exception that the cluster is c, II a-p), 7)
only identified particles belonging to the cluster are marked
but not actually moved. The pivot employed will also be B N
used for the construction of all subsequent clusters in thisince all joint bonds i{l5"™}={I"} already have been bro-
decomposition. These subsequent clusters are built just likken. The factorsC; andC, refer to the probability of realiz-
the first cluster, except that particles that are already part ahg a particular arrangement of internal bonds in clusters 1
an earlier cluster will never be considered for a new clusterand 2, respectivelycf. Sec. Il Q. Hence, the total transition
Once each particle is part of exactly one cluster, the deconprobability of movingboth clusters is given by

position is completed. Like in the SW algorithm, every clus-

ter can then be moved.e., all particles belonging to it are T1(X—Y)=CyCy eXP{—B 2 A-B82 A
translated via a point reflectipindependently, e.g., with a ief1y (15

probability f. Despite the fact that all clusters except the first

are built in a restricted fashion, each individual cluster is —B Z,t A“] (8)
constructed according to the rules of the Wolff formulation ne{"

of Sec. Il C. The exclusion of particles that are already parin the reverse move, the energy differences for all external
of another cluster simply corresponds to the fact that everyyroken bonds have changed sign, but the energy differences
bond should be considered only once. If a bond is brokefor the joint bonds connecting cluster 1 and 2 are the same as

during the construction of an earlier cluster, it should not ben the forward move. Thus, cluster 1 is created with prob-
reestablished during the construction of a subsequent clusteypility

The cluster decomposition thus obtained is not unique, as it
depends on the placement of the pivot and the choice of the C; II @ -P) II @ -p)

i {19

first particle. Evidently, this also holds for the SW algorithm. ie{mPYy jeqioint

In order to establish that this prescription is a true equiva-
lent of the SW algorithm, we prove that each cluster can be =C, 11 expl+ BA] H exi- Al (9)
moved (reflected independently while preserving detailed ie{m) jel™

balance. If only a single cluster is actually moved, this es-

. ) > “>Wwhere thep; reflects the sign change of the energy differ-
sentially corresponds to the Wolff version of the GCA, sinCegces compared to the forward move and the product over

€he external bonds involves the complement of the(l5&4.

same holds true if several clusters are moved and no inter1=he creation probability for the second cluster is

actions are present between particles that belong to different

clusters(the hard-sphere algorithm is a particular realization G Il @a-p)=c, [] exd+pBA] (10)
of this situation. If two or more clusters are moved and e (mY e

brokenbonds exist between these clusters, i.e., a nonvanish-
ing interaction exists between particles that belong to dispar@nd the total transition probability for the reverse move is
ate (moving) clusters, then the shared broken bonds are ac- _
tually preserved and the proof of detailed balance provided Y = X =CiCo eXp{"L A . Eext Aitp . Eext A
in the previous section no longer applies in its original form. tedm ) jeimy™}
However, since these bonds are identical in the forward and -8 > Al 11
. . B n (13)
the reverse move, the corresponding factors cancel out. This
is illustrated for the situation of two clusters whose construc-
tion involves, respectively, two sets of broken bofkis and  Accordingly, detailed balance is still fulfilled with an accep-
{ko}. Each set comprises bont${l,} and{l,}, respectively  tance ratio of unity,
that lead to arnncreasein pair energy and bonds ({m;} and T (X —Y)
K . . 12
{m,}, respectively that lead to alecreasen pair energy. We ———=
further subdivide these sets inéxternalbonds that connect TiY = X) e k&Y je{k§Y
cluster 1 or 2 with the remainder of the system goiht _
bonds that connect cluster 1 with cluster 2. Accordingly, the - exd:— BBy - EX)]’ (12
probability of creating cluster 1 is given by in which {k?t}:{@xt}u{mgx‘} and {kgxt}:ﬂgxt}u{mgxt} and
Ex and Ey refer to the internal energy of the system before
and after the move, respectively. This treatment applies to
c Il a-p)=c, 11 a-p any simultaneous move of clusters, so thath cluster in the
i e fke} iefly decomposition indeed can be moved independenitlyout
violating detailed balance. This completes the proof of the
=C [I @-m H (1-py). (6 multiple-cluster version of the GCA. It is noteworthy that the
(s jefiP™y probabilities for breaking joint bonds in the forward and re-
verse moves cancel only because the probability in the clus-
ter construction factorizes into individual probabilities.
Upon construction of the first cluster, the creation of the In order to illustrate the validity of this approach, we have
second cluster has a probability applied it to the binary Lennard-Jones mixture employed in

ne oy

exp[—ﬂ > A-B 2 A
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L6 T - - ' P radii (r9¢ and rSM" respectively, the use of an identical
14 L g © cell structure with a cell size that is determined by the large
particles would be highly inefficient for the smaller particles.
1.2 Thus, two cell structures are constructed in this cagieh
Lol cell siz_esharge and Isma”, respectively and each parti_cle is_
' stored in the appropriate cell of the structure belonging to its
0.8 - species, and incorporated in the corresponding linked list,
following the standard approadi]. However, in order to
061 efficiently deal with interactions between unlike species
04 | (which have a cutoff,), a mapping between the two cell
structures is required. If all small particles must be located
02 r that interact with a given large particle, we proceed as fol-
0t - . . lows. First, the small celt is identified in which the center
0 2 4 6 8 10 12 14 of the large particle resides. Subsequently, the interacting

7 particles are located by scanning over all small cells within a
cubic box with linear size &, centered around. This set

of cells is predetermined at the beginning of a run and their
bols) of the generalized geometric cluster algorithm. The figuremdlm‘:‘S are stored in an array. Each set contains approxi-

— Is 3 - . )
shows pair correlation functions for the size-asymmetric Lennard-mately_Nce”_(zrqutllsma”) members. In ar;miﬁflmer_lt imple
Jones mixture described in the teg}. and g represent the large- MeNtation, lsmqy is not much larger tham which for

FIG. 3. Comparison between the single-cluster verdigac.
Il C; solid lines and the multiple-cluster versiofBec. Il D; sym-

cut

large and large-small correlation functions, respectively. There i$hort-range int_eratl:tio_ns is of the order of the size of a small
excellent agreement between both algorithms. particle. Likewiser ¢, is typically of the order of the size of

the large particle, so thal..;=0(a®), wherea denotes the
size asymmetry between the two species. SMgg indices
must be stored for each large cell, the memory requirements
become very large for cases with large size asymmetry, cf.
Ref.[18] for «=100.

Ref.[2]. This system consists of 800 small particleEam-
eter 04,=1.0; reduced couplingge,,=0.40 and 400 large
particles(diametero,,=5.0; reduced coupling@e,,=0.225

at a total packing fractiogp~0.213. Following the Lorentz-
Berthelot mixing rules[1], we set the parameters for the
large-small Lennard-Jones interaction d@,=(oq1+0%,)/2
ande;,= 1,5, The particles are contained in a cubic cell Iil. ALGORITHM PROPERTIES
with linear sizeL=50. Periodic boundary conditions are ap- A. Efficiency

plied and the cutoff for all interactions is set t@r;3. We

perform a full cluster decomposition for every configuration  The most notable feature of the generalized GCA, as em-
and carry out a reflection for every cluster with a probability phasized in Ref[2], is the efficiency with which it generates
f=3. As illustrated in Fig. 3, the correlation functions for uncorrelated configurations for size-asymmetric mixtures.
pairs of large particles and for pairs of large and small parThis performance directly derives from the nonlocal charac-
ticles agree perfectly with the results obtained in RBf.by  ter of the point reflection employed. In general, the transla-
means of the single-cluster version. In Sec. Ill A, we addression of a single particle over large distances is impossible in
the relative efficiency of both approaches. all but the most dilute situations. On the other hand,
multiple-particle moves typically entail an energy difference
that strongly suppresses the likelihood of acceptance. By en-
abling collective moves while maintaining a higand, in
The actual implementation of the generalized GCA in-fact, maximal acceptance probability, fluid mixtures can be
volves a variety of issues. The point reflection with respect tasimulated efficiently over a wide parameter rar{gelume
the pivot requires careful consideration of the periodicfraction, size asymmetry, and temperajuri€ollowing Ref.
boundary conditions. Furthermore, as mentioned above, par2], we illustrate this for a simple binary mixture in which
ticles that have been translated via a point reflection must nahe autocorrelation time is determined as a function of size
be translated again in the same cluster move, and particlesymmetry. This system contains 150 large particles of size
that interact with a given cluster particle both before ando,,, at fixed volume fractionp,=0.1. FurthermorelN; small
after the translation of that cluster particle must be considparticles are present, also at fixed volume fractify=0.1.
ered only once, on the basis of the difference in pair potenThus, as the sizer;; of these small particles is varied
tial. In order to account for all interacting pairs in an efficientfrom o,,/2 t0 09,/15 (i.e., the size ratioa=oy,/ 011 iS
manner, we employ the cell index methidd. For mixtures increased from 2 to 15 their number increases from
with large size asymmetrigghe situation where the gener- N;=1200 to 506 250. Pairs of small particles and pairs in-
alized GCA excels it is natural to set up different cell struc- volving a large and a small particle act like hard spheres.
tures, with cell lengths based upon the cutoffs of the variouslowever, in order to prevent depletion-driven aggregation of
particle interactions. For example, in the case of a binarthe large particleg37], we introduce a short-ranged Yukawa
mixture of two species with very different sizes and cutoff repulsion,

E. Implementation issues
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10° . . . . . . . position to vary withe. The main points to note ar@) the
Metropolis MC GCA greatly suppresses the autocorrelation timgea
5 <7y for a>2, with an efficiency increase that amounts to
107 1 more than three orders of magnitude alreadydfei7; (ii) the
increase of the autocorrelation time withis much slower
10* F 1 for the GCA than for a local-move MC algorithm, making
z the GCA increasingly advantageous with increasing size
T 5 asymmetry. This second observation is confirmed by the
107 ¢ 3 large size asymmetries that could be attained in Rl
10 | Geometric Cluster MC ]
B. Cluster size
10! , , , , , , , The cluster size clearly has a crucial influence on the per-

0 2 4 6 8 10 12 14 16 formance of the GCA. If a cluster contains more than 50% of
size ratio o all particles, an equivalent change to the system could have

o i ) been made more efficiently by moving its complement; un-

FIG. 4. Efficiency comparison between a conventional local up-tqtynately, it is unclear how to determine this complement

date algorithm(open symbolsand the generalized geometric clus- \ishout constructing the cluster. Nevertheless, it is found that

ter algorithm(closed symbols for a binary mixture(see texXtwith 0 o104rithm operates in a comparatively efficient manner
size ratio a. Whereas the autocorrelation time per partigix- for average relative cluster sizes as large as 90% or more
pr esseq Inus of CPU time per particle moyeapidly increases with Once the total packing fraction of the system exceeds a cer—.
size ratio, the GCA features only a weak dependence.on tain value, the original hard-core GCA breaks down because
each cluster occupies the entire system. The same phenom-

+ %, I's oy enon occurs in the generalized GCA, but in addition the clus-
Uy(r) =1 o (13 ter size can saturate because of strong interactions. Thus, the
e exd— k(r —ox)], >0y, maximum accessible volume fraction depends on a consid-

erable number of parameters, including the range of the po-
where Be=3.0 and the screening lengtki=0y,. In the tentials and the temperature. For multicomponent mixtures,
simulation, the exponential tail is cut off atg,. size asymmetry and relative abundance of the components
The additional Yukawa interactions also provide a fluctu-are of importance as well, and the situation can be compli-
ating internal energyE(t) that permits us to determine the cated further by the presence of competing interactions.
rate at which the system decorrelates. We consider the inte- AS an illustration, we consider the cluster-size distribution
grated autocorrelation timeobtained from the energy auto- for a monodisperse Lennard-Jones flhrticle diameter

correlation functior38], o). For an interaction cutoff of 24 the critical temperature
T, lies just below 1.18/kg [39], wheree denotes the cou-
it = (E(0)E(t)) — (E(0))? (14 pling strength. Figure &) shows this distribution at the criti-

(E(0)® - (E(0))? ° cal density 0.327° (¢~0.168 for a range of supercritical
temperatures. Already at temperatures that are far above the
and comparer for a conventional(Metropoli MC algo-  critical temperature, the cluster-size distribution tends toward
rithm and the generalized GO&ee Fig. 4. In order to avoid  a bimodal form, indicative of the formation of large clusters.
arbitrariness resulting from the computational cost involvedThe gap between the two peaks widens with decreasing tem-
with a single sweep or the construction of a cluster, we experature and in the vicinity of the critical temperature the
presst in actual CPU timgassuming that both methodolo- average cluster size becomes very large. This is greatly dif-
gies have been programmed in an efficient manrarrther-  ferent from the SW and Wolff algorithms, which operate at
more, 7 is normalized by the total number of particles in the the percolation threshold when applied to a critical system.
system, to account for the variation My as the size ratia Remarkably, when applied to a lattice gas at its critical den-
is increased. sity, the geometric cluster algorithm was also found to yield
For conventional MC calculationsy,: rapidly increases the power-law distribution that is characteristic for a perco-
with increasinga, because the large particles tend to getlating systen{40]. This can be understood from the fact that
trapped by the small particles. Indeed, alreadydor7 itis  excluded-volume effects play no role in geometric operations
not feasible to obtain an accurate estimate#gs. By con-  applied to lattice-based systems. In continuum systems, the
trast, 7gcp €xhibits a very different dependence an At superposition of a system and its point-reflected counterpart
a=2, both algorithms require virtually identical simulation percolates already when the original system has a density
time, which establishes that the GCA does not involve conthat is considerably below the percolation threshold. Moti-
siderable overhead compared to standard algoritiinesyy, ~ vated by this, we investigate the cluster-size distribution in
it is mitigated by the fact that all moves are acceptétpon  the same Lennard-Jones fluid at a twice lower density,
increase ofa, 7oy initially decreasesuntil it starts to in-  =0.160"2, see Fig. ). For the highest temperatufehich
crease weakly. The nonmonotonic variationmf results is already twice as low as the highest temperature in panel
from the changing ratit\,/N; which causes the cluster com- (8], this distribution now is a monotonously decreasing
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0 4
T 10 - . ; .
10 T=40
! T=30 Metropolis MC
1071 |4 T=25
T=20
102 T=15
7 ?
< 107 )
= 2
104 i SR e
107
1046 R o“:z“" ¥ 1 L ! !
0 0.2 0.4 0.6 0.8 1 10 20 30 40 50
X L
10° g . FIG. 6. Energy autocorrelation time as a function of linear
;f%g ; system size for the critical Lennard-Jones fluid, in units of particle
107 T=12 a i sweeps, for three different Monte Carlo algorithms: Local moves
T=10 -+ (“Metropolis MC”); GCA with Swendsen-Wang-type cluster de-
1072 T=08 + composition and probability 0.5¢‘SW 50%”) and 0.75(“SW
75%") of moving each cluster; single-cluster GGANOIff" ).
> 107
R
107 C. Critical slowing down
107 The cluster-size distributions obtained in the previous sec-
tion suggest that the generalized GCA will not suppress criti-
107 cal slowing down for the Lennard-Jones fluid. As empha-

X ’ sized in Ref[2], this does not have to be viewed as a great

S i _ shortcoming of the algorithm, because of the efficiency im-

. FIG. 5. Cluster-slze distributions as afuncpon of relative glusterprovement it delivers for the simulation of size-asymmetric
size X, for a monodisperse Lennard-Jones fla].Critical density, fluids over a wide range of temperatures and packing frac-

p=0.32"3. The distribution is strongly bimodal in the vicinity of tions (cf. Fig. 4. Nevertheless, since suppression of critical
the critical temperature and remains bimodal up to relatively high - 9. 9. ’ PP

temperatures(b) Twice smaller densityp=0.16"2. The cluster- slowmg down pla}ys sggh an important role for lattice cIusFer
size distribution only becomes bimodal for temperatures relatively2/90rithms and since it is a feature that has not been realized
close to the critical temperature and decreases monotonously f&y any fluid simulation algorithm, we have investigated the
higher temperatures. Identical symbols refer to identical temperaintegrated autocorrelation time for the energy at the critical
tures in both panels. All temperatures are indicated in terms opoint, as a function of linear system size. In Fig. 6, these
elkg. times are collected for three algorithmd:) Conventional

: : : local-update Metropolis algorithm(2) Wolff version of the
function of cluster size, and the bimodal character only ap—C_;CA; (3a) SW version of the GCA, in which each cluster is

ears for temperatures around 25% above the critical tem= . o .
gerature. P ° point-reflected with a probability 0.5F3b) SW version of

It turns out to be possible to influence the cluster-siz¢N€ GCA, in which each cluster is point-reflected with a
distribution by placing the pivot in a biased manner. Rathefrobability 0.75. This also serves as a performance compari-
than first choosing the pivot location, a particle is selectedson between the single-cluster GCA and the multiple-cluster
that will become the first member of the cluster. Subsewvariant. Just as for spin models, the single-cluster version is
quently, the pivot is placed at random within a cubic box ofmore efficient than the SW-like approach. However, all vari-
linear size5> 0, centered around the position of this particle. ants of the GCA exhibit the same power-law behavior, which
By decreasing, the displacement of the first particle is de- outperforms the Metropolis algorithm by a factet2. It is
creased, as well as the number of other particles affected Oyhportant to emphasize that this acceleration may be due to
this displacement. As a consequence, the average cluster sigly suppression of the hydrodynamic slowing dof2]
decreases, and higher volume fractions can be reached. Uliaysed by the conservation of the densithich may couple
mately, the cluster size'will still occupy the entire system, butg the energy correlatiorf€]). Remarkably, already for mod-
we found that the maximum accessible volume fraction canyate system sizes the generalized GCA outperforms the Me-
be increased from approximately 0.23 to a value close g s’ algorithm, despite the time-consuming construction

0.34. This value indeed corresponds to the percolatio ; : )
threshold for hard spheres, 0.34[41]. Note that the proof %;L?gﬁ)ﬁ;séﬁf:;ezlg' S(@] which lead to only small con

of detailed balance is not affected by this modification.
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IV. EXAMPLES 1.6

geﬁeralizc& GCA —
hard-core GCA + acceptance criterion O

A. Size-asymmetric mixture with Yukawa attraction between
unlike species Lar

As an illustration of the capabilities of the generalized
GCA, we apply it to a binary mixture first studied in Ref. 1.2
[33]. It contains dilute colloidal particles in a solvent of
smaller particles. Both species are modeled as hard spheress ;o[
but unlike pairs experience a Yukawa attraction which pro-
motes the accumulation of the solvent particles around the
colloids. Systems like this are relevant for an improved un-
derstanding of depletion effects in the presence of additional

rlo)

0.8

nonadditive interactiong43], but have hitherto been studied 0.6 . : . : : . .
only to a limited extent, because of computational limita- L0511 115 r}f 125 13 135 14
tions. 22

Specifically, we set up a simulation cell containing 29000 1 7. pair correlation function of dilute colloidal particlés-
small particlesspecies 1at volume fraction;=0.116 and  ymeterr,, and volume fractiong,=0.001 in an environment of
two large colloids(species 2at volume fraction$,=0.001.  gmajler particles(diameter oy;=c5,/5 and volume fractiond,

The pair potentials are chosen as =0.116 that experience a Yukawa-type attractive interaction with
too <o the colloids. The symbols represent data obtained by means of the
V= oo i=1,2 (15) hard-core GCA supplemented by an acceptance crit¢@8h The
0, r= o, solid line is obtained via the generalized GCA.
and
B. Entropic interactions induced by “soft” depletants
+ 0, <o . . .-
V=Y . 12 (16) The addition of small, nonadsorbing additives, e.g., poly-
-Teexg-«(r-op)], >0, mers, to a colloidal suspension can lead to the well-known

depletion interaction between colloids. This interaction has
been modeled successfully by the Asakura-Oos&h@)

) . model[37,45, which treats the polymer chains as ideal, non-

ergy (1.6/3kgT, and the decay parameténverse screening interacting spheres that have an excluded-volume interaction

length is set tox=4/07, [44]. with the colloids. Alternatively, the polymers can be treated

In Ref.[33], this system was investigated by means of the;g arq spheres, leading to an additive binary hard-sphere

hard-core GCA supplemented by an acceptance criterion 'fnixture [46]. Although on a qualitative level both theories
order to take into account the Yukawa attractions. In view 0fyq a6 with the experimentally observed trends for depletion
the size asymmetry between the two species, this alréadyiq actions, it recently has been suggested that a more accu-
yields a considerable efficiency improvement over conven;;q description can be obtained by means of a model in

tional MC simulations that only employ local moves. How- i the polymer pair potential is described by a Gaussian
ever, the acceptance criterion potentially greatly deteriorat 7-49

performance, as clusters will be constructed that are subse-

quently rejected in their entirety. Indeed, the authors report r\2

[33] that accurate direct sampling of the colloidal pair corre- V(r)=e exp[— (E) } : an
lation functiong(r) was prohibitively expensive, so that they

instead obtained it via numerical differentiation of tie-  where ¢ is the strength of the repulsive potential aRd

where o,,=(011+0,,)/2 and o5,/ 01,=5. The coupling
strength is set te¢=1.6kgT, corresponding to a contact en-

gratedpair correlation functiorfsee symbols in Fig.)7This  =aRg its width. For dilute and semidilute polymer solutions,
differentiation involves a polynomial fit and the result was @=1.13 and 1.45, respectively, were found to be appropriate
found to be sensitive to the degree of this polynomial. parameter value$48]. This potential can be viewed as a

In the generalized GCA, the Yukawa attractions are di-model that interpolates between the AO model for ideal poly-
rectly incorporated in the cluster construction, so that allmers and the binary hard-sphere mixture.
clusters are accepted. As demonstrated in Figolid line), In order to demonstrate that these systems can be accu-
accurate results fag(r) can now be obtained through direct rately and efficiently simulated by means of the generalized
sampling. Note that our choice for the colloid concentrationGCA, we study the depletion interactions between colloidal
¢, is slightly smaller than in Ref.33] (leading to a some- particles as a function of the widia and the strengtl. The
what larger number of small particles in our calculalion colloid and polymer volume fractions are fixed at 0.010 and
which is, however, irrelevant for the results, as they haved.10, respectively, and their size ratio is set to 20. We employ
already converged to the dilute colloid limit. Thus, the gen-the polymer coil diametef2R;) as unit length scale. The
eralized GCA opens possibilities for a systematic investigasimulation involves 1.& 1° “polymers” and 20 colloidal
tion of the effect of interaction strength and range on theparticles. Figure 8 shows that the AO model generally over-
potential of mean force, as a function of size asymmetry an@stimates the depletion attraction in both strength and range.
solvent concentration. Indeed, the soft-core polymer model yields an effective col-
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have derived a multiple-cluster variant of the GCA, in which
a particle configuration is decomposed into clusters that can
be independently point-reflected with respect to a given pivot
point, without affecting the remainder of the system. This
algorithm establishes that it is generally possible to identify
such clusters and to devise a rejection-free Monte Carlo
scheme, independent of the detailed nature of the pair poten-
tials between particles. No restrictions are imposed upon the
w2000 A nqmbe( of species involved, but e_rgodicity can only be main—
a=1633 O tained if not every cluster contains all particles of a given
-3.0 o=1414 O species. For monodisperse hard-sphere fluids, this implies a
ES"EIEEEZ% _____________ threshold packing fraction around 0.23, which can be in-
. s P creased to approximately 0.34 if the pivot is placed in a
0 0.5 1 L5 2 biased manner. For interactions with a longer range, the clus-
Df2Rg) ters will typically be larger and hence the maximum acces-
sible volume fraction decreases. The nonlocal character of
the particle translations permits the efficient decorrelation of
fluid mixtures that involve a strong size asymmetry between
the components. Unavoidably, the resulting dynamics have
no physical interpretation, but all thermodynamic equilib-
rium properties are identical to those sampled by conven-
tional algorithms. While cluster-size distributions for the
Lennard-Jones fluid indicate that the percolation threshold
and the critical point do not coincide, the algorithm signifi-

U(D) kg T

U(D) kT

e=10 O cantly accelerates canonical simulations at the critical point.

-3.0 ¢ g:%:g 2 Two specific example applications have been discussed,
HS potential both involving depletion interactions in size-asymmetric bi-

40 , ,  AOpotential - nary mixtures. In the first illustration, we assess the effect of

0 0.5 1 L5 2 attractive interactions between unlike species on the pair cor-

D/Rg) relation function of the larger species. This system has been

) ) ) ) ) investigated earlier by means of the hard-sphere GCA

FIG. 8. Effective pair potential as a function of colloid surface- supplemented by an acceptance criterion, and is included
to-surface separatiol for the Gaussian polymer model, BA7).  porq 1o jllustrate that it is possible to perform the calculation
Panel(a) pertains to a fixed interaction strength LT for vari- -, reiection-free manner. In the second illustration, we cal-
ous interaction widths=2.0, 1.633, and 1.41driangles, circles, culate the depletion interaction induced by a depletant that

and squares, re_spectnv&lyn panel(b), els vaned(l.a_<BT, 2.0T, acts as a hard sphere for the larger species but has a Gaussian
and 5.&gT, indicated by squares, circles, and triangles, respec:

tively) for fixed a=1.414. The solid line in both figures represents interaction potential with Oth.er depletant particles. It IS. d.em_
the hard-sphere result obtained by density-functional thEe6y onstrated how such calculations can be performed efficiently

and the dotted line pertains to the expression by[\&] for the AO for rglatively large size ratios and lead to depletion pqtentials
model[37]. that interpolate between the well-known AO potential and
the depletion potential for binary hard-sphere mixtures.

loidal pair potential that decreases in strength and range with A variety of extensions to the GCA can be devised. In
) pairp i . '9 drang particular, the application to nonspherical particles is
increasinga ande. In addition, this potential exhibits a re-

- . : : straightforward, but may require an additionabtationa)
pulsive barner.for a separatidd= Rg, owing to many-body Monte Carlo move that permits an efficient relaxation of the
effects that arise from the mutual repulsion between poly-

mers. By contrast. there is 0ood agreement between the a: tational degrees of freedom. Periodic boundary conditions
1ers. by C o 9 9 ; gie an essential ingredient for the point-reflection moves em-
ditive hard-sphere mixture and the Gaussian polymer mode

in partculr fors =2k anda= L5, Inerestingly, these are o Ctie 1 SR8 1 VEIEl SYERERR, SR
precisely the values that were found to reasonably represeﬁ

dilute and semidilute self-avoiding random-walk polymers int reflection is performed in a horizontal plane and the
9 poly relaxation along thez coordinate is performed via local

Monte Carlo moves. For strongly aspherical particles, the
overlap threshold—and hence the range of accessible volume
V. SUMMARY AND CONCLUSIONS fractions—decreases signif!cantly. _
In summary, the generalized GCA offers a wide range of
We have presented a detailed description of the generaépportunities to efficiently simulate fluid systems that were
ized geometric cluster algorithm for continuum fluids intro- hitherto inaccessible to computer simulations. In addition, it
duced in Ref[2], which is a generalization of the work by may well be possible to generalize this algorithm to other
Dress and Krautfi4]. In order to emphasize the connection situations in which cluster algorithms are employed, such as
with the Swendsen-Wang algorithm for lattice models, weguantum-mechanical systems.

[47-49.
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